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Abstract. We de�ne triangulated piece-wise linear constant mean curvature
surfaces using a variational characterization, so that they are critical for area
amongst continuous piece-wise linear variations which preserve the boundary
and simplicial structure and also (in the nonminimal case) the volume to one
side of the surface. We then �nd explicit examples, such as discrete minimal
catenoids and helicoids.

We use these discretized surfaces to study the index of unstable minimal
surfaces, by numerically evaluating the spectrum of their Jacobi operators,
and this approach deviates from other numerical investigations in that we use

a variational characterization to de�ne the discrete approximating surfaces.
Our numerical estimates con�rm known results on the index of some smooth
minimal surfaces, and provide additional information regarding their area-
reducing variations.

1. Introduction

Smooth submanifolds, and surfaces in particular, with constant mean curvature
(cmc) have a long history of study, and modern work in this �eld relies heavily on
geometric and analytic machinery which has evolved over hundreds of years. How-
ever, nonsmooth surfaces are also natural mathematical objects, even though there
is less machinery available for studying them. (Consider M. Gromov's approach of
doing geometry using only a set with a measure and a measurable distance function
[8].)

Here we consider piecewise-linear triangulated surfaces (we call them "discrete
surfaces"), which have been brought more to the forefront of geometrical research
by computer graphics. We de�ne cmc for discrete surfaces in R3 so that they are
critical for volume-preserving variations, just as smooth cmc surfaces are. Discrete
cmc surfaces have both interesting di�erences from and similarities with smooth
ones. For example, they are di�erent in that smooth minimal graphs in R3 over a
bounded domain are stable, whereas discrete minimal graphs can be highly unsta-
ble. We will explore properties like this in section 2.

And in section 3 we will see some ways in which these two types of surfaces are
similar. We will see that: a discrete catenoid has an explicit description in terms
of the hyperbolic cosine function, just as the smooth catenoid has; and a discrete
helicoid can be described with the hyperbolic sine function, just as a conformally
parametrized smooth helicoid is; and there are discrete Delaunay surfaces which
have translational periodicities, just as smooth Delaunay surfaces have.

Pinkall and Polthier [16] used Dirichlet energy and a numerical minimization
procedure to �nd discrete minimal surfaces. In this work, we rather have the goal to
describe discrete minimal surfaces as explicitly as possible, and thus we are limited
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to the more fundamental examples, for example the discrete minimal catenoid and
helicoid. We note that these explicit descriptions will be useful for implementing a
procedure that we describe in the next paragraphs.

Discrete surfaces have an advantage over smooth ones in the following way:
Function spaces representing smooth variations of smooth surfaces are in�nite di-
mensional, and hence the study of linear operators on these spaces is often very
di�cult. In particular, it is often di�cult to get explicit information about the
spectra of such operators. However, the function spaces of variations of discrete
surfaces contain piece-wise linear functions and are �nite dimensional, and linear
operators then reduce to matrices. So the discrete case is much easier to handle.

This suggests that an useful procedure for studying the spectra of the linear Ja-
cobi operator in the second variation formula of smooth cmc surfaces is to consider
the corresponding spectra of discrete cmc approximating surfaces. (This is strongly
related to the �nite element method in numerical analysis; however, in our case the
�nite element approximations will have geometric and variational meaning in their
own right.) As a particular example of this, consider that a problem of interest
is to �nd the index (the number of negative points in the spectrum) of a smooth
minimal surface, and that the standard approach to this problem is to replace the
metric of the surface with the metric obtained by pulling back the spherical metric
via the Gauss map. This approach can yield the index: for example, the index of
a complete catenoid is 1 ([6]), the index of a complete Enneper surface is 1 ([6]),
the index of a complete Jorge-Meeks n-noid is 2n� 3 ([11], [10]) and the index of
a complete genus k Costa-Ho�man-Meeks surface is 2k + 3 for every k � 37 ([13],
[12]). However, this approach does not yield the eigenvalues and eigenfunctions on
compact portions of the original minimal surfaces, as the metric has been changed.
It would be interesting to know the eigenfunctions associated to negative eigen-
values, since these represent the directions of variations that reduce area, and the
above procedure can provide this information.

In sections 4 and 6 we establish some tools for studying the spectrum of discrete
cmc surfaces, and then we test the above procedure on two simple cases { a (mini-
mal) rectangle, and a portion of a smooth minimal catenoid bounded by two circles.
In these two cases we know the spectra of the smooth surfaces (section 5), and we
know approximating discrete cmc surfaces as well (section 3), so we can check that
the above procedure produces good approximations for the eigenvalues and smooth
eigenfunctions (section 7), which indeed must be the case, by the theory of the �-
nite element method [3], [7]. With these successful tests, we go on to consider cases
where we do not apriori know what the smooth eigenfunctions should be, such as
the Jorge-Meeks 3-noid and the genus 1 Costa surface (section 7).

We note that the above procedure can also be implemented using discrete ap-
proximating surfaces which are found only numerically and not explicitly, such as
surfaces found by the method in [16]. And in fact, we use the method in [16] to
�nd approximating surfaces for the 3-noid and Enneper surface and Costa surface.

2. Discrete Minimal and cmc Surfaces

We start with a variational characterization of discrete minimal and discrete cmc
surfaces. This characterization will allow us to construct explicit unstable discrete
cmc surfaces. (Note that merely �nding minima for area with respect to a volume
constraint would not su�ce for this, as that would produce only stable examples.)
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Figure 1

We will use cmc discrete surfaces that are unstable for our later numerical spectra
computations.

The following de�nition for discrete surfaces works equally well for surfaces in
R
n, but, as our constructions will all be in R3, we restrict to this space.

De�nition 2.1. A discrete surface in R3 is a triangular mesh T which has the
topology of an abstract 2-dimensional simplicial complex K combined with a geo-
metric C0-surface realization in R3. The geometric realization jKj is determined
by a set of vertices V = fp1; :::; png � R

3, and T can be identi�ed with the pair
(K;V). The simplicial complex K represents the connectivity of the mesh. The 0,
1, and 2 dimensional simplices of K represent the vertices, edges, and triangles of
the discrete surface.

Let T = (p; q; r) denote an oriented triangle of T with vertices p; q; r 2 V. Let
pq denote an edge of T with endpoints p; q 2 V .

For p 2 V, let star(p) denote the triangles of T that contain p as a vertex. For
an edge pq, let star(pq) denote the (at most two) triangles of T that contain pq as
an edge.

The area of a discrete surface is

area(T ) :=
X
T2T

areaT ;

where areaT denotes the area of the triangle T as a subset of R3.

De�nition 2.2. Let V = fp1; :::; png be the set of vertices of a discrete surface T .
A variation T (t) of T is de�ned as a C2 variation of the vertices pi

pi(t) : [0; �)! R
3 so that pi(0) = pi 8i = 1; :::; n:

The straightness of the edges and the 
atness of the triangles are preserved as the
vertices move.
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In the smooth situation, when the boundary is �xed, the variation space is typ-
ically restricted to normal variations, since the tangential parts of the variations
only perform reparametrizations of the surfaces in the variations. However, on dis-
crete surfaces there is an ambiguity in the choice of normal vectors at the vertices,
so we allow arbitrary variations. But we will later see (section 7) that our experi-
mental results can accurately estimate normal variations of a smooth surface when
the discrete surface is a close approximation to the smooth surface.

In the following we derive the evolution equations for some basic entities under
surface variations.

Let T (t) be a variation of a discrete surface T . At each vertex p of T , the
gradient of area is

rp areaT =
1

2

X
T=(p;q;r)2starp

J(r � q) ;(1)

where J is rotation of angle �
2
in the plane of each oriented triangle T . The �rst

derivative of the surface area is then given by the chain rule

d

dt
areaT =

X
p2V

hp0;rp areaT i :

The volume of the surface is the oriented volume enclosed by the cone of the surface
over the origin in R3

volT :=
1

6

X
T=(p;q;r)2T

hp; q � ri = 1

3

X
T=(p;q;r)2T

h ~N; pi � areaT ;

where p is any of the three vertices of the triangle T and

~N =
(q � p) � (r � p)

j(q � p) � (r � p)j
is the oriented normal of T . It follows that

rp volT =
1

6

X
T=(p;q;r)2starp

q � r =
1

6

X
T=(p;q;r)2starp

2 � areaT � ~N + p� (r � q)

(2)

and

d

dt
volT =

X
p2V

hp0;rp volT i :

Note that if p is an interior vertex, then the boundary of star p is closed andP
T2starp p� (r � q) = 0 disappears from rp volT .
In the smooth case, a minimal surface is critical with respect to area for any

variation that �xes the boundary, and a cmc surface is critical with respect to area
for any variation that preserves volume and �xes the boundary. We wish to de�ne
discrete cmc surfaces so that they have the same variational properties for the same
types of variations. So we will consider variations T (t) of T that �x the boundary
@T and that additionally preserve volume in the nonminimal case, which we call
permissible variations. The condition that makes a discrete surface area-critical for
any permissible variation is expressed in the following de�nition.
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De�nition 2.3. A discrete surface has constant mean curvature (cmc) if there
exists a constant H so that rp area = Hrp vol for all interior vertices p. If H = 0
then it is minimal.

This de�nition for discrete minimality has been used in [16]. In contrast, our
de�nition of discrete cmc surfaces di�ers from [14], where cmc surfaces are char-
acterized algorithmically using discrete minimal surfaces in S3 and a conjugation
transformation. Compare also [2] for a de�nition via discrete integrable systems
which lacks variational properties.

2.0.1. Uniqueness of Discrete Minimal Disks. Uniqueness of a bounded minimal
surface with a given boundary ensures that it is stable, and uniqueness can some-
times be decided using the maximum principle of elliptic equations. For example,
the maximum principle ensures that a minimal surface is contained in the convex
hull of its boundary, and, if the boundary has a 1-1 projection to a convex planar
curve, then it is unique for that boundary and is a minimal graph. The maximum
principle also shows that any minimal graph is unique even when the projection of
its boundary is not convex. More generally, stability still holds when the surface
merely has a Gauss map image contained in a hemisphere, as shown in [1] (although
their proof employs tools other than the maximum principle).

However, such statements do not hold for discrete minimal surfaces. Consider
the surface shown in the left-hand side of Figure 2, whose height function has a
local maximum at an interior vertex. This example does not lie in the convex
hull of its boundary and thereby disproves existence of a discrete version of the
maximum principle. Also, the three surfaces on the right-hand side in Figure 3 are
all minimal graphs over a ring-like domain with the same boundary contours and
simplicial structure, and yet they are not the same surfaces, hence graphs with given
simplicial structure are not unique. And the left-hand surface in Figure 3 shows
a surface whose Gauss map is contained in a hemisphere but which is unstable
(this surface is not a graph) { another example of this property is the �rst ring-like
surface in Figure 3, which is also unstable. (We de�ne stability of discrete cmc
surfaces in section 4).

The in
uence of the discretization on nonuniqueness, like as in the ring-like
examples of Figure 3, can also be observed in a more trivial way for a discrete
minimal graph over a simply connected convex domain. The two surfaces on the
right-hand side of Figure 2 have the same trace, i.e. they are identical as geometric
surfaces, but they are di�erent as discrete surfaces. Interior vertices may be freely
added and moved inside the middle planar square without a�ecting minimality.

In contrast to existence of these counterexamples we believe that some properties
of smooth minimal surfaces remain true in the discrete setting, based on numerical
experiments. We say that a discrete surface is a disk if it is homeomorphic to a
simply connected domain.

Conjecture 2.1. Let T � R3 be a discrete minimal disk whose boundary projects
injectively to a convex planar polygonal curve, then T is a graph over that plane.

The authors were able to prove this conjecture with the extra assumption that all
the triangles of the surface are acute, using the fact that the maximum principle (a
height function cannot attain a strict interior maximum) actually does hold when
all triangles are acute.
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Figure 2. Two views on the left-hand side of a surface that de-
�es the maximum principle, and two discrete minimal surfaces on
the right-hand side with boundary vertices (x; 0; z1), (�x; 0; z1),
(0; y; z2), and (0;�y; z2) in R3. These two surfaces on the right
have the same trace in R3 but have di�erent simplicial structures,
and a surprising feature of these examples is that the innermost
triangles form a square, regardless of the values of x; y; z1 6= z2.

One can ask if a discrete minimal surface T with given simplicial structure and
boundary is unique if it has a 1-1 perpendicular or central projection to a convex
polygonal domain in a plane. The placement of the vertices need not be unique,
as we saw in the examples on the right-hand side of Figure 2, however, one can
consider if there is uniqueness in the sense that the trace of T in R3 is unique.

Conjecture 2.2. Let � � R3 be a polygonal curve that either A: projects injec-
tively to a convex planar polygonal curve, or B: has a 1-1 central projection from
a point p 2 R3 to a convex planar polygonal curve. Then, for each given simplicial
structure of disk type with boundary compatible to �, there exists a discrete minimal
disk T with boundary � and that simplicial structure, and the trace of T is uniquely
determined. Furthermore, T is a graph in the case A, and T is contained in the
cone of � over p in the case B.

We have the following weaker form of Conjecture 2.2, which follows from Corol-
lary 4.1 of section 4 in the case that there is only one interior vertex:

Conjecture 2.3. If a discrete minimal surface is a graph over a convex polygonal
domain, then it is stable.

3. Explicit Discrete Surfaces

Here we describe explicit discrete catenoids and helicoids, which seem to be the
�rst explicitly known nontrivial complete discrete minimal surfaces (with minimal-
ity de�ned variationally).

3.1. Discrete Minimal Catenoids. To derive an explicit formula for embedded
complete discrete minimal catenoids, we choose the vertices to lie on congruent
planar polygonal meridians, with the meridians placed so that the traces of the
surfaces will have dihedral symmetry. We will �nd that the vertices of a discrete
meridian lie equally spaced on a smooth hyperbolic cosine curve. Furthermore,
these discrete catenoids will converge uniformly in compact regions to the smooth
catenoid as the mesh is made �ner.

We begin with a lemma that prepares the construction of the meridian of the
discrete minimal catenoid. We derive an explicit representation of the position of a
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Figure 3. Two unstable and two stable discrete minimal surfaces
in R3. The �rst �gure on the left is unstable, even though it is
locally a graph over a horizontal plane, in the sense that the third
coordinate of the normal vector to the surface is never zero. The
second �gure on the left is one of the four congruent pieces of
the �rst �gure. The middle �gure (the leftmost annular graph)
is unstable, even though it is a graph over an annular polygonal
region in a horizontal plane, and it has area-reducing variations
that can deform to either of the last two stable minimal surfaces
on the right, which have the same simplicial structure.

vertex surrounded by four triangles in terms of the other four vertex positions. The
center vertex is assumed to be coplanar with each of the two pairs of two opposite
vertices, with those two planes becoming the plane of the vertical meridian and the
horizontal plane containing a dihedrally symmetric polygon (consisting of edges of
the surface).

Lemma 3.1. Consider the vertex p = (d; 0; e) surrounded by four vertices q1 =
(a; 0; b), q2 = (d cos �; d sin �; e), q3 = (f; 0; g), and q4 = (d cos �;�d sin �; e), form-
ing four triangles (p; q1; q2), (p; q2; q3), (p; q3; q4), and (p; q4; q1). Given real numbers
a, b, d, e, and angle � so that b 6= e, there exists a choice of real numbers f and g
such that

rp area(star p) = 0

if and only if

2ad >
(e� b)2

1 + cos �
:

Furthermore, when f and g exist, they are unique and must be of the form

f =
2(1 + cos �)d3 + (a+ 2d)(e � b)2

2ad(1 + cos �) � (e � b)2
;

g = 2e� b :

Proof. First we note that the assumption b 6= e is necessary. If b = e, then one may
choose g = b, and then there is a free 1-parameter family of choices of f .

For simplicity we apply a vertical translation and a homothety about the origin
of R3 to normalize d = 1, e = 0, and by doing a re
ection if necesary, we may
assume b < 0. Let c = cos � and s = sin �.
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We derive conditions for the coordinate components of rp area to vanish. The
second component vanishes by symmetry of star p. Using the de�nitions

c1 :=
(a� 1)s2 � b2(1� c)p
2b2(1� c) + (a� 1)2s2

; c2 :=
ab + bp

2b2(1 � c) + (a � 1)2s2
;

the �rst (resp. third) component of rp area vanishes if

c1 =
g2(1� c)� (f � 1)s2p
2g2(1� c) + (f � 1)2s2

; resp. c2 =
�(f � 1)g � 2gp

2g2(1� c) + (f � 1)2s2
:(3)

Dividing one of these equations by the other we obtain

f � 1 =
c2g(1� c) + 2c1
c2s2 � c1g

g ;(4)

so f is determined by g. It now remains to determine if one can �nd g so that
c2s

2 � c1g 6= 0. If f � 1 is chosen as in equation 4, then the �rst minimality
condition of equation 3 holds if and only if the second one holds as well. So we only
need to insert this value for f � 1 into the �rst minimality condition and check for
solutions g. When c1 6= 0, we �nd that the condition becomes

1 =
c2s

2 � c1g

jc2s2 � c1gj
g

jgj
�(1� c)g2 � 2s2p

2(1 � c)c22s
4 + 4c21s

2 + (2(1 � c)c21 + s2(1 � c)2c22)g
2
:

Since �(1� c)g2� 2s2 < 0, note that this equation can hold only if c2s
2 � c1g and

g have opposite signs, so the equation becomes

1 =
(1� c)g2 + 2s2p

2(1� c)c22s
4 + 4c21s

2 + (2(1 � c)c21 + s2(1� c)2c22)g
2
;

which simpli�es to

1 =

p
(1� c)g2 + 2s2p
(1� c)c22s

2 + 2c21
:

This implies g2 is uniquely determined. Inserting the value

g = �b ;
one �nds that the above equation holds. When g = b < 0, we �nd that c2s2�c1g <
0, which is impossible. When g = �b > 0, we �nd that c2s2 � c1g < 0 if and only
if 2a(1 + c) > b2. And when g = �b and 2a(1 + c) > b2, we have the minimality
condition when

f =
2 + 2c+ ab2 + 2b2

2a + 2ac� b2
:

Inverting the transformation we did at the beginning of this proof brings us back
to the general case where d and e are not necessarily 1 and 0, and the equations
for f and g become as stated in the lemma.

When c1 = 0, we have (a�1)(1+c) = b2 and (f�1)(1+c) = g2, so, in particular,
we have a > 1 and therefore 2a(1 + c) > b2. The right-hand side of equation (3)
implies g = �b and f = a. Again, inverting the transformation from the beginning
of this proof, we have that f and g must be of the form in the lemma for the case
c1 = 0 as well.
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Figure 4. The construction in Lemma 3.1.

Note that the necessary and su�cient condition in the next lemma is identical to
that of the previous lemma. This observation is crucial to the proof of the upcoming
theorem.

Lemma 3.2. Given two points (a; b) and (d; e) in R2 and an angle �, with b 6= e,
there exists an r so that these two points lie on some vertical translate of the curve�

r cosh

�
1

e� b
arccosh

�
1 +

1

r2
(e � b)2

1 + cos �

�
t

�
; t

�
; t 2 R ;

if and only if 2ad > (e�b)2
1+cos�

.

Proof. De�ne �̂ = e�bp
1+cos �

. Without loss of generality, we may assume 0 < a � d

and e > 0, and hence �e � b < e. If the points (a; b) and (d; e) both lie on the
curve in the lemma, then

arccosh

 
1 +

�̂2

r2

!
= arccosh

�
d

r

�
� sign(b) � arccosh

�a
r

�
;

where sign(b) = 1 if b � 0 and sign(b) = �1 if b < 0. Note that if b = 0, then a
must equal r (and so arccosh(a

r
) = 0). This equation is solvable (for either value of

sign(b)) if and only if 
d

r
+

r
d2

r2
� 1

! 
a

r
+

r
a2

r2
� 1

!
= 1 +

�̂2

r2
+
�̂

r

s
2 +

�̂2

r2

when b � 0, or

d
r
+
q

d2

r2
� 1

a
r
+
q

a2

r2
� 1

= 1 +
�̂2

r2
+
�̂

r

s
2 +

�̂2

r2
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when b � 0, for some r 2 (0; a]. The right-hand side of these two equations has the
following properties:

1. It is a nonincreasing function of r 2 (0; a].
2. It attains some �nite positive value at r = a.
3. It is greater than the function 2�̂2=r2.

4. It approaches 2�̂2=r2 asymptotically as r ! 0.

The left-hand sides of these two equations have the following properties:

1. They attain the same �nite positive value at r = a.
2. The �rst one is a nonincreasing function of r 2 (0; a].
3. The second one is a nondecreasing function of r 2 (0; a].
4. The second one attains the value d

a
at r = 0.

5. The �rst one is less than the function 4ad=r2.
6. The �rst one approaches 4ad=r2 asymptotically as r ! 0.

So, from these properties it is clear that one of the two equations above has a

solution for some r if and only if 2ad > �̂2. This completes the proof.

We now derive an explicit formula for discrete minimal catenoids, which is given
by specifying the vertices along planar polygonal meridians. Then the traces of the
surfaces will have dihedral symmetry of order k � 3. The surfaces are tessellated
by planar isosceles trapezoids like aZ2 grid, and each trapezoid can be triangulated
into two triangles by choosing a diagonal of the trapeziod as the interior edge. Either
diagonal can be chosen, as this does not a�ect the minimality of the catenoid.

The discrete catenoid has two surprising features. First, the vertices of a merid-
ian lie on a smooth hyperbolic cosine curve (which is the pro�le curve of smooth
catenoids), and there is no apriori reason to have expected this. Secondly, the
vertical spacing of the vertices along the meridians is constant.

Theorem 3.1. There exists a four-parameter family of embedded and complete
discrete minimal catenoids C = C(�; �; r; z0) with dihedral rotational symmetry and
planar meridians. If we assume that the dihedral symmetry axis is the z-axis, and
a meridian lies in the xz-plane, then, up to vertical translation, the catenoid is
completely described by the following properties:

1. � = 2�
k
, k 2 N, k � 3, is the dihedral angle.

2. The vertices of the meridian in the xz-plane interpolate the smooth cosh curve

x(z) = r cosh

�
1

r
az

�
;

with

a =
r

�
arccosh

�
1 +

1

r2
�2

1 + cos �

�
;

where the parameter r > 0 is the waist radius of the interpolated cosh curve,
and � > 0.

3. For any given arbitrary initial value z0 2 R, the pro�le curve has vertices of
the form

zj = z0 + j�

xj = x(zj )

where � is the constant vertical distance between adjacent vertices of the merid-
ian.
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Figure 5. A discrete minimal catenoid and helicoid. (For this
helicoid we have chosen x0 = 0.)

4. The planar trapezoids of the catenoid may be triangulated independently of
each other.

Proof. By Lemma 3.1, if we have three consequtive vertices (xn�1; zn�1),(xn; zn),
and (xn+1; zn+1) along the meridian (the pro�le curve in the xz-plane), they satisfy
the recursion formula

xn+1 =
(xn�1 + 2xn)�̂2 + 2x3n

2xnxn�1 � �̂2
; zn+1 = zn + � ;(5)

where � = zn � zn�1 and �̂ = �=
p
1 + cos �. As seen in Lemma 3.1, the vertical

distance between (xn�1; zn�1) and (xn; zn) is the same as the vertical distance

between (xn; zn) and (xn+1; zn+1), so we may consider � and �̂ to be constants
independent of n.

In order for the surface to exist, Lemma 3.1 requires that

2xnxn�1 > �̂2 :

This implies that all xn have the same sign, and we may assume xn > 0 for all n.
Therefore the surface is embedded. Also, as the condition 2xnxn�1 > �̂2 implies

2xn+1xn =
2xn(xn�1 + 2xn)�̂

2 + 4x4n

2xnxn�1 � �̂2
>

2xnxn�1�̂2

2xnxn�1 � �̂2
> �̂2 ;

we see, inductively, that xj is de�ned for all j 2Z. Hence the surface is complete.
One can easily check that the function x(z) in the theorem also satis�es the

recursion formula (5), in the sense that if xj := x(zj ), then these xj satisfy this
recursion formula. It only remains to note that, given two initial points (xn�1; zn�1)
and (xn; zn) with zn > zn�1, there exists an r so that these two points lie on
the curve x(z) with our given � and � (up to vertical translation) if and only if

2xnxn�1 > �̂2, as shown in Lemma 3.2.
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Remark 3.1. If we consider the example where (x1; z1) = (1; 0) and (x2; z2) =

(1 + �̂2; �), then the recursion formula implies that

(xn; zn) = (1 +

n�1X
j=1

2j�1an�1;j �̂2j ; (n� 1)�) ; for n � 3 ;

where an�1;j is de�ned recursively by an;m = 0 if m < 0 or n < 0 or m > n,
a0;0 = 1, an;0 = 2 if n > 0, and an;m = 2an�1;m�an�2;m+an�1;m�1 if n �m � 1.
Thus

an;m =

�
n+m
2m

�
+

�
n+m� 1

2m

�
:

These an;m are closely related to the recently solved re�ned alternating sign matrix
conjecture [4].

Corollary 3.1. There exists a two-parameter family of discrete catenoids C1(�; z0)
whose vertices interpolate the smooth minimal catenoid with meridian x = cosh z.

Proof. The waist radius of the discrete meridian must be r = 1. Further, we must
choose the parameter a = 1 which is ful�lled if � and � are related by 1+cos �+�2 =
(1 + cos �) cosh �. The o�set parameter z0 may be chosen arbitrarily leading to a
vertical shift of the vertices along the smooth catenoid.

Corollary 3.2. For each �xed r and z0, the pro�le curves of the discrete catenoids
C(�; �; r; z0) approach the pro�le curve x = r cosh z

r
of a smooth catenoid uniformly

in compact sets of R3 as �; � ! 0.

Proof. Since

lim
�!0

1

�
arccosh(1 +

1

r2
�2

1 + cos �
) =

p
2

r
p
1 + cos �

;

it follows that the pro�le curve of the discrete catenoid converges uniformly (in C0

sense) to the curve

x = r cosh

p
2z

r
p
1 + cos �

as �! 0. Then, as � ! 0 we approach the pro�le curve x = r cosh z
r
.

3.2. Discrete Minimal Helicoids. We continue on to the derivation of explicit
discrete helicoids, which are a natural second example of complete, embedded dis-
crete minimal surfaces.

In the smooth setting, there exists an isometric deformation through conjugate
surfaces from the catenoid to the helicoid (see, for example, [15]). So, one might
�rst try to make a similar deformation from the discrete catenoids in Theorem 3.1
to discrete minimal helicoids. But such a deformation appears to be impossible {
in fact, in order to make an associate family of discrete minimal surfaces, one must
allow non-continuous triangle nets having greater 
exibility, as described in [17].

Therefore, we adopt a di�erent approach for �nding discrete minimal helicoids.
The helicoids will be comprised of planar quadrilaterals, each triangulated by four
coplanar triangles, see Figure 5. Each quadrilateral is the star of a unique vertex,
and none of its four boundary edges are vertical or horizontal, and one pair of
opposite vertices in its boundary have the same z-coordinate, and the four boundary
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q4

Figure 6. The construction in Lemma 3.3.

edges consist of two adjacent pairs of edges of equal length. First we derive an
explicit representation of the center vertex of a typical vertex star of the helicoid:

Lemma 3.3. Let p be a point with a vertex star consisting of four vertices q1,
q2, q3, q4 and four triangles 4i = (p; qi; qi+1), i 2 f1; 2; 3; 4g (mod 4). We as-
sume that p = (u; 0; 0), q1 = (b cos �; b sin �; 1), q2 = (b cos �;�b sin �;�1), q3 =
(t cos �;�t sin �;�1), q4 = (t cos �; t sin �; 1) with real numbers b < u < t and
� 2 (0; �

2
).

If either

t = �b(1 + 2u2 sin2 �) + 2u
p
1 + b2 sin2 �

p
1 + u2 sin2 � or

b = �t(1 + 2u2 sin2 �) + 2u
p
1 + t2 sin2 �

p
1 + u2 sin2 � ;

then rp area vanishes.

Proof. Consider the conormals J1 = J(q2 � q1), J2 = J(q3 � q2), J3 = J(q4 � q3),
J4 = J(q1 � q4), where J denotes oriented rotation by angle �

2
in the triangle 4j

containing the edge being rotated. Then

J1 = (2
p
1 + b2 sin2 �; 0; 0) and J3 = (�2

p
1 + t2 sin2 �; 0; 0) :

Since hJ4; (cos �; sin �; 0)i = 0 and det(J4; (cos �; sin �; 0); (u�b cos �;�b sin �;�1)) =
0 and jJ4j2 = (t � b)2, we have that the �rst component of J4 (and also of J2) is

u(t� b) sin2 �p
1 + u2 sin2 �

:

By symmetry, the second and third components of J2 and J4 are equal but opposite
in sign, hence the second and third components of J1 + J2 + J3 + J4 are zero. So
for the minimality condition to hold at p, we need that the �rst component of
J1 + J2 + J3 + J4 is also zero, that is, we need

u(t� b) sin2 �p
1 + u2 sin2 �

+
p
1 + b2 sin2 � �

p
1 + t2 sin2 � = 0 ;

and the solution of this with respect to b or t is as in the lemma. So, for this
solution, rp area vanishes.
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Figure 7. Discrete analogues of cylinders and Delaunay surfaces.

Theorem 3.2. There exists a family of complete embedded discrete minimal heli-
coids, with the connectivity as shown in Figure 5. The vertices, indexed by i; j 2Z,
are the points

r sinh(x0 + j�)

sin �
(cos(i�); sin(i�); 0) + (0; 0; ir) ;

for any given reals � 2 (0; �
2
) and r; � 2 R.

Note that these surfaces are invariant under the screw motion that combines
vertical upward translation of distance 2r with rotation about the x3-axis by an
angle of 2�. The term x0 determines the o�set of the vertices from the z-axis, and �
determines the horizontal spacing of the vertices. The homothety factor is r, which
equals the vertical distance between consecutive horizontal lines of edges.

Proof. Without loss of generality, we may assume r = 1. So for a given i, the
vertices are points on the line fs(cos(i�); sin(i�); i) j s 2 Rg, for certain values of s.
We choose x0 and � so that the (j � 2)'th vertex has s-value sj�2 = sinh(x0 + (j �
2)�)= sin � and the (j � 1)'th vertex has s-value sj�1 = sinh(x0 + (j � 1)�)= sin �.
Lemma 3.3 implies that the j'th vertex has s-value

sj = �sj�2(1 + 2s2j�1 sin
2 �) + 2sj�1

q
1 + s2j�2 sin

2 �
q
1 + s2j�1 sin

2 � ;

a recursion formula that is satis�ed by

sj = sinh(x0 + j�)= sin � :

Lemma 3.3 implies a similar formula for determining sj�3 in terms of sj�2 and
sj�1, with the same solution. Finally, noting that those vertices whose star is a
planar quadrilateral can be freely moved inside that planar quadrilateral without
disturbing minimality of the surface, the theorem is proved.

3.3. Discrete Cylinders and Delaunay Surfaces. We now describe some ways
one can �nd discrete analogues of cylinders and Delaunay surfaces. The simplest
way is to choose positive reals a and e and an integer k � 3, and then choose the
vertices to be

pj;` = (a cos(2�j=k); a sin(2�j=k); e`)

for j; ` 2 Z. We then make a grid of rectangular faces, and cut the faces by
diagonals with endpoints pj;` and pj+1;`+1. This is a discrete cmc surface with
H = a�1(cos(�=k))�1. It is interesting to note that H is independent of the value
of e. See the left-hand side of Figure 7.

Another example is to choose positive reals a, b, e, and an integer k � 3, and to
choose the vertices to be

pj;` = (a cos(2�j=k); a sin(2�j=k); e`) when j + ` is even, and
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Figure 8. A triply-periodic discrete minimal surface, whose sta-
bility properties have been investigated by Karsten Gro�e Brauck-
mann. On the left is a fundamental piece, and such pieces are
attached as on the right to make an in�nite-topology surface with
the same symmetry as the Z3 cubic lattice in R3.

pj;` = (b cos(2�j=k); b sin(2�j=k); e`) when j + ` is odd,

for j; ` 2 Z. We then make a grid of quadrilateral faces, and cut the faces by
diagonals with endpoints pj;` and pj+1;`+1 if j + ` is even, and by diagonals with
endpoints pj;`+1 and pj+1;` if j + ` is odd. By symmetry, it is clear that rpj;`area
and rpj;`vol are parallel at each vertex; and for each value of e, one can then show
the existence of values of a and b so that H is the same value at all vertices, using
an intermediate value argument. Thus a discrete cmc cylinder is produced. See
the second surface in Figure 7.

A third example can be produced by taking the vertices to be

pj;` = (a cos(2�j=k); a sin(2�j=k); e`) when ` is even, and

pj;` = (b cos(2�j=k); b sin(2�j=k); e`) when ` is odd,

for j; ` 2 Z. We then make a grid of isosceles trapezoidal faces, and put an extra
vertex in each of the trapezoidal faces, and connect this extra vertex by edges to
each of the four vertices of the surrounding trapezoid. Keeping the placement of
the vertices of the surface as symmetric as possible, one must move these extra
vertices in R3 so that rarea and rvol become parallel at these vertices, and then
one must solve so that H has the same value at all vertices of the surface. This can
be done numerically. See the last two examples in Figure 7.

Remark 3.2. The 2-dimensional boundaries of the tetrahedron, octahedron, and
icosahedron are discrete cmc surfaces. The boundaries of the cube and dodecahe-
dron are not discrete surfaces in our sense, as they are not triangulated. However,
by adding a vertex to the center of each face and connecting it by edges to each
vertex in the boundary of the face, we can make discrete surfaces, and then we can
move these face-centered vertices perpendicularly to the faces to adjust the mean
curvature.

4. Second Variation of Area

We now begin to consider the spectra of the second variation for discrete cmc
surfaces, which necessarily starts with a technical and explicit computation of the
second variation. For notating area and volume, we shall now frequently use "a"
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and "V " instead of "area" and "vol", for brevity. We will also use jT j or j(p; q; r)j
to signify the area of a triangle T = (p; q; r).

Lemma 4.1. For a compact discrete cmc H surface T with vertex set V,

a00(0) :=
@2

@2t
area(T )

����
t=0

=
X
p2V

hp0; (rpa)
0 �H(rpV )

0i

for any permissible variation.

Proof.

a00(0) =
X
p2V

hp00;rpai + hp0; (rpa)
0i =

X
p2V

hp00;HrpV i +
X
p2V

hp0; (rpa)
0i:

For a minimal discrete surface, the �rst term on the right hand side is clearly 0.
For a discrete cmc surface with H 6= 0, the variation p(t) is volume preserving, so

@ vol(T )
@t

= 0 8t =)
X
p

hp0;rpV i = 0 8t =)
X
p

hp00;rpV i+ hp0; (rpV )
0i = 0 ;

proving the lemma.

De�nition 4.1. A minimal or cmc discrete surface T is stable if a00(0) � 0 for
any permissible variation.

We now consider a vector-valued function vpj 2 R3 that is de�ned on the n
interior vertices Vint = fp1; :::; png of T . We may extend this function to the

boundary vertices of T as well, by assuming vp = ~0 2 R3 for each boundary vertex
p. The vectors vpj are the variation vector �eld of any boundary-�xing variation of
the form

pj(t) = pj + t � vpj +O(t2):
The fact that we have already restricted to boundary-�xing variations is no ob-
struction, as we will always consider only permissible variations. We de�ne the
vector ~v 2 R3n by

~vt = (vtp1 ; :::; v
t
pn
):

We will now �nd a symmetric 3n � 3n matrix Q (also considered as a bilinear
form), so that ~vtQ~v is equal to a00(0) for any permissible variation with variation
vector �eld ~v. We de�ne

� (~v) :=
X
p2V

hvp; (rpa)
0i =

X
p2V

hvp; 1
2

X
T=(p;q;r)2star(p)

~N � (r0 � q0) + ~N 0 � (r � q)i

and

�(~v) :=
X
p2V

hvp; (rpV )
0i;

and so a00(0) = � (~v) � H�(~v) for any permissible variation with variation vector
�eld ~v. The purpose of the next two propositions is to �nd matrices Qa and QV so
that � (~v) = ~vtQa~v and �(~v) = ~vtQV ~v. Thus Q = Qa �HQV .
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Proposition 4.1. There is a symmetric bilinear form represented by a 3n � 3n
matrix Qa, where Qa can be considered as an n� n grid with a 3� 3 entry Qa;pipj

for each pair of interior vertices pi; pj 2 Vint of T , so that

� (~v) = ~vtQa~v

for the variation vector �eld ~v of any permissible variation. The entry Qa;pipj is 0
if the vertices pi; pj are not adjacent, and is

Qa;pipj =
1

2

X
(pi;pj;r)2star(pipj)

1

jpi � pj j2 ((pi � pj) � J t(pi � pj)

�J(pi � pj) � (pi � pj)
t)� cot �(pi;pj;r)

~N(pi;pj;r) � ~N t
(pi;pj;r)

for pi and pj adjacent and unequal, where �(pi;pj;r) is the interior angle of the
triangle (pi; pj ; r) at r, and is

Qa;pipi =
1

4

X
(pi;q;r)2star(pi)

jr � qj2
j(pi; q; r)j

~N(pi;q;r)
~N t
(pi;q;r)

when the vertices are both equal to pi. Here, ~N(p;q;r) denotes the oriented unit

normal vector of the triangle (p; q; r) (which we will subsequently abbreviate to ~N).

Proof. If ~v and ~w are variation vector �elds for any pair of permissible variations,
we can de�ne a bilinear form

Qa(~v; ~w) :=
1

2

X
T=(p;q;r)2T

�hvp � wr � vr � wp + vq � wp � vp � wq + vr �wq � vq � wr; ~Ni+
1

2jT j hvp � (r � q) + vq � (p � r) + vr � (q � p);

wp � (r � q) + wq � (p� r) + wr � (q � p)i�

1

2jT j hvp � (r � q) + vq � (p� r) + vr � (q � p); ~N i�

hwp � (r � q) + wq � (p � r) + wr � (q � p); ~N i :
Using ~N 0 = (q�p)�(r0�p0)+(q0�p0)�(r�p)

2jT j � ~N
2jT jh(q�p)�(r0�p0)+(q0�p0)�(r�p); ~Ni,

it follows that � (~v) = Qa(~v;~v). Qa is clearly bilinear, and the last two terms of Qa

are obviously symmetric in ~v and ~w. The �rst term is also symmetric in ~v and ~w,
since vp�wr � vr �wp = wp� vr �wr � vp, vq �wp� vp�wq = wq� vp�wp� vq,
and vr � wq � vq � wr = wr � vq � wq � vr.

It only remains to determine an explicit form for Qa. For a given interior vertex
p, suppose ~v and ~w are nonzero only at p, that is, that ~vt = (0t; :::; 0t; vtp; 0

t; :::; 0t)

and ~wt = (0t; :::; 0t; wt
p; 0

t; :::; 0t). Then

Qa(~v; ~w) = Qa;pp(vp; wp) =
1

4

X
T=(p;q;r)2star(p)
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1

jT j hvp � (r � q); wp � (r � q)i � 1

jT j hvp � (r � q); ~N ihwp � (r � q); ~N i

=
1

4

X
T=(p;q;r)2star(p)

1

jT jv
t
p(jr � qj2I � (r � q)(r � q)t � ((r � q)� ~N)((r � q) � ~N)t)wp

=
1

4

X
T=(p;q;r)2star(p)

jr � qj2
jT j vtp( ~N ~N t)wp ;

hence Qa;pp is of the form in the proposition.
Now suppose ~vt = (0t; :::; 0t; vtp; 0

t; :::; 0t) and ~wt = (0t; :::; 0t; wt
q; 0

t; :::; 0t) for
some given unequal interior vertices p and q. If p and q are not connected by some
edge of the surface, then clearly Qa(~v; ~w) = 0, so assume that p and q are adjacent.
Note that star(pq) then contains two triangles (p; q; rj ) for j = 1; 2 and precisely

one of them is properly oriented. Noting also that the normal vector ~N of a triangle
changes sign when the orientation of the triangle is reversed, we have the following
equation:

Qa(~v; ~w) = Qa;pq(vp; wq) =
1

2

X
T=(p;q;rk);k=1;2

hvp �wq; ~N i+

1

2jT j hvp � (rk � q); wq � (p � rk)i � 1

2jT j hvp � (rk � q); ~N ihwq � (p� rk); ~N i =

=
1

4

2X
k=1

1

jT jv
t
p

�
(p � rk)(q � rk)

t � (q � rk)(p � rk)
t � hp� rk; q � rki ~N ~N t

�
wq :

For a triangle (p; q; r), one can check that

(p� r)(q � r)t � (q � r)(p � r)t =

2j(p; q; r)j
jp� qj2

�
(p � q)(J(p� q))t � J(p� q)(p � q)t

�
;

so Qa;pq is as in the proposition.

Proposition 4.2. There is a symmetric bilinear form represented by a 3n � 3n
matrix QV , where QV has a 3�3 entry QV;pipj for each pair of vertices pi; pj 2 Vint
of T , so that

�(~v) = ~vtQV ~v

for the variation vector �eld ~v of any permissible variation. We have QV;pipi = 0,
and QV;pipj = 0 when the vertices pi and pj are not adjacent, and

QV;pipj =
1

6

0
@ 0 r2;3 � r1;3 r1;2 � r2;2

r1;3 � r2;3 0 r2;1 � r1;1
r2;2 � r1;2 r1;1 � r2;1 0

1
A

for adjacent unequal pi and pj , where (pi; pj ; rk) are the two triangles in star(pipj)
and rk = (rk;1; rk;2; rk;3) for k = 1; 2, and (pi; pj ; r2) is properly oriented and
(pi; pj ; r1) is not.
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Proof.X
p2V

hp0; (rpV )
0i =

X
p2Vint

hvp; 1
6

X
(p;q;r)2star(p)

(q � r)0i

=
1

6

X
p2Vint

0
@ X
q adjacent to p;q 6=p

hvp � vq; r2 � r1i
1
A ;

where (p; q; r2) is the properly oriented triangle in star(pq), and (p; q; r1) is the
non-properly oriented triangle in star(pq). Thus we have

�(~v) =
X

p2Vint

0
@ X

q adjacent to p;q 6=p
vtp(QV;pq)vq

1
A ;

where QV;pq is a 3 � 3 matrix de�ned as in the proposition. Thus QV;pp = 0, and
the fact that QV;pq is skew-symmetric in p and q implies QV is symmetric.

Corollary 4.1. If a discrete cmc surface T has only one interior vertex, then it
is stable.

Proof. Denote the single interior vertex by p, so star(p) = T . Then Qa = Qa;pp

and QV = QV;pp are 3� 3 matrices. By Propositions 4.1 and 4.2, QV = 0 and for
any vector up 2 R3 at p we have

utpQaup =
1

4

X
(p;q;r)2T

jr � qj2
j(p; q; r)ju

t
p
~N ~N tup =

1

4

X
(p;q;r)2T

jr � qj2
j(p; q; r)j hup;

~N i2 � 0 ;

so a00(0) � 0 for all permissible variations.

5. Jacobi Operator for Smooth cmc Surfaces

We now are able to begin the study of the spectra of the second variation of
discrete cmc surfaces, as the second variation is now in an explicit form. However,
we postpone this to the next section, in order to discuss the spectra of the second
variation of smooth cmc surfaces here. We digress to the smooth case for later
comparison with the discrete case (section 7). In particular, here we explicitly
determine the eigenvalues and eigenfunctions of the Jacobi operator for portions of
smooth catenoids.

Let � : M ! R
3 be an immersion of a compact 2-dimensional surface M . Let

~N be a unit normal vector �eld on �(M) (we write �� ~N simply as ~N de�ned on
M). Let �(t) be a smooth variation of immersions for t 2 (��; �) so that �(0) = �

and �(t)j@M = �(0)j@M for all t 2 (��; �). Let ~E(t) be the variation vector �eld on
�(t). We can assume, by reparametrizing �(t) for nonzero t if necessary, that the

corresponding variation vector �eld at t = 0 is ~E(0) = u ~N , u 2 C10 (M). Let a(t)
be the area of �(t)(M) andH be the mean curvature of �(M). The �rst variational
formula is

a0(0) :=
d

dt
a(t)

����
t=0

= �
Z
M

hnH ~N;u ~NidA;

where h; i and dA are the metric and area form on M induced by the immersion
�. We now assume H is constant, so a0(0) = �nH R

M
udA. Let V (t) be the

volume of �(t)(M), then V 0(0) =
R
M
udA. The variation is volume preserving if
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R
M
h ~E(t); ~N (t)idA(t) = 0 for all t 2 (��; �). In particular,

R
M
udA = 0 when t = 0,

so a0(0) = 0 and �(M) is critical for area amongst all volume preserving variations.
The second variation formula for volume preserving variations �(t) is

a00(0) :=
d2

dt2
a(t)

����
t=0

=

Z
M

fjruj2 � (4H2 � 2K)u2gdA =

Z
M

uLudA ;

where K is the Gaussian curvature on M induced by �, and

L = �4� 4H2 + 2K

is the Jacobi operator with Laplace-Beltrami operator 4.
There are two ways that the index of a smooth cmc surface can be de�ned:
The geometrically natural de�nition for index is the maximum possible dimen-

sion of a subspace S of volume preserving variation functions u 2 C10 (M) for which
a00(0) < 0 for all nonzero u 2 S, which we call Ind(M). (We are identifying �(M)
with M so that we can write simply Ind(M), rather than Ind(�(M)).)

The analytically natural de�nition for index is the number of negative eigenvalues
of the operator L, which equals the maximum possible dimension of a subspace SU
of (not necessarily volume preserving) variation functions u 2 C10 (M) for whichR
M
uLudA < 0 for all nonzero u 2 SU . We call this index IndU (M), where the

subscript U stands for \Unconstrained index".
Clearly, IndU (M) � Ind(M). It is also not di�cult to see that IndU (M)�1 �

Ind(M) [9]. As it is geometrically more natural, we want to compute Ind(M). But
IndU (M) is more accessible to computation than Ind(M), and since they di�er by
at most 1, computing IndU (M) means that we know Ind(M) is either IndU (M) or
IndU (M)�1.

In the case that we are considering minimal surfaces, as in section 7, the volume
constraint is not necessary, and hence Ind(M) = IndU(M).

5.1. Eigenvectors of L for Rectangles. Consider the rectangle

M = f(x; y; 0) 2 R3 j 0 � x � x0; 0 � y � y0g
as a smooth minimal immersion (inclusion map) into R3, and consider functions on
it with Dirichlet boundary conditions. In this case, L = �4, and its eigenvalues
and eigenfunctions are

�m;n =
m2�2

x20
+
n2�2

y20
; �m;n =

2p
x0y0

sin
m�x

x0
sin

n�y

y0

for (m;n) 2Z+�Z+. Hence Ind(M)= 0.

5.2. Eigenvectors of L for Catenoids. We can consider the catenoid as a map

� : (x; y) 2 R ! (cosx cosh y; sinx cosh y; y) 2 R3 ;
where

R = f(x; y) 2 R2 j 0 � x � 2�; y0 � y � y1g ;
and the left and right boundary segments ofR are identi�ed with each other. This is
a conformal map, and the metric, Laplace-Beltrami operator, and Gauss curvature
are

ds2 = cosh2 y � (dx2 + dy2) ; 4 =

@2

@2x
+ @2

@2y

cosh2(y)
; K = � cosh�4 y :
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Figure 9. The function f(y) (computed numerically) in the eigen-
function cos(mx)f(y) = f(y) when m = 0 for the catenoid �(R)
with y1 = �y0 = 1:91. The corresponding eigenvalue is � � �0:54,
and all other eigenvalues are positive. We show this function for
later comparison with the �rst eigenvector �eld of the second vari-
ation of a discrete catenoid in section 7.

We put Dirichlet boundary conditions on the upper and lower boundary segments
of R.
Lemma 5.1. An L2-basis of eigenfunctions of the Jacobi operator L = �4+2K of
� can be chosen so the eigenfunctions are of the form sin(mx)f(y) or cos(mx)f(y),
for m 2 N [ f0g.
Proof. It is well known that L, with respect to the Dirichlet boundary condition, has
a discrete spectrum in R, and that, for all � 2 R, ker(L� �) is a �nite dimensional
space of smooth functions. Furthermore, an orthonormal basis of the L2 space over
R (with respect to ds2) can be obtained as a set of smooth eigenfunctions of L
satisfying the Dirichlet boundary condition.

De�ne the operator D = i @
@x
. Then DL = LD, so D : ker(L� �)! ker(L� �).

For functions u and v that are 2�-periodic in x we have

h @
@x
u; viL2 + hu; @

@x
viL2 =

Z
R
(uxv + uvx) cosh

2 ydxdy = 0;

which implies that the operator @
@x

is skew symmetric. Therefore D is symmetric.
D is elliptic, so it has a basis of eigenfunctions in each �nite dimensional space

ker(L� �). So we can choose a set of functions that is simultaneously an L2-basis
of eigenfunctions for both D and L. Since the eigenfunctions of D must be of the
form emxif(y) with m 2Z, the lemma follows.

Now note that an eigenfunction sin(mx)f(y) of L satis�es

L(sin(mx)f(y)) = � sin(mx)f(y)

=
m2 sin(mx)f(y)

cosh2 y
� sin(mx)fyy (y)

cosh2 y
� 2 sin(mx)f(y)

cosh4 y
;

and a similar computation holds for an eigenfunction cos(mx)f(y). It follows that

fyy = (m2 � � cosh2 y � 2 cosh�2 y)f ;

and �nding the eigenvalues � amounts to �nding solutions of this equation that
satisfy the boundary conditions f(y0) = f(y1) = 0. Thus we know all of the eigen-
functions, up to solutions of a determined 2nd-order ordinary di�erential equation.
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6. Jacobi Operator for Discrete cmc Surfaces

Since we know the second variation matrix Q explicitly (section 4), we are now
able to �nd the "discrete Jacobi operator" for compact discrete cmc surfaces T ,
analogous to L in the smooth case (section 5). We �rst convert variation vector
�elds into piece-wise linear continuous functions, in order to naturally describe the
L2 norm on the space of variation vector �elds. With this L2 norm, we then �nd the
correct matrix for the discrete Jacobi operator, and this matrix has the eigenvalues
and eigenfunctions of the second variation of T .

Consider a permissible variation

pj(t) = pj + t � vpj +O(t2) ;
where the vector-valued function vpj 2 R3 de�ned on the n interior vertices Vint =
fp1; :::; png of T (vp = ~0 if p is a boundary vertex) comprises its variation vector
�eld ~vt = (vtp1 ; :::; v

t
pn
), as de�ned in section 4.

There is a natural way to extend the function ~v to a continuous piece-wise linear
R
3-valued function v de�ned at every point of T . In order to de�ne v, we �rst

de�ne a set of piece-wise linear continuous head functions:

De�nition 6.1. For p 2 Vint, let  p be the head function on T which is 1 at p
and is 0 at all other vertices of T . We then extend  p to every point of T (in the
unique way) so that it is linear on each edge and each face of T .

There is a head function for each pj 2 Vint, hence there are n of them, and the
support of  pj is star(pj).

De�nition 6.2. We de�ne v associated to ~v by

vjT = vp p + vq q + vr r ;

for all triangles T = (p; q; r) in T .
The function v has the following four properties:

1. v is continuous,
2. v is linear on each triangle T � T ,
3. v is ~0 on @T ,
4. v is the variation vector �eld for the C0 surface variation induced by the

associated vertex variation pj(t).

We will consider the vpj to be the R
3-valued coe�cients of v with respect to the

basis of functions f p1 ; :::;  png. And, as the  pj form a basis for all functions v
with the above properties, they are a basis (with scalars in R3) for the following
3n-dimensional function space:

De�nition 6.3. De�ne Sh of the discrete surface T to be

Sh := fv : T ! R
3 j v 2 C0(T ), v is linear on each T 2 T and vj@T = 0g :

We have named this space Sh, in keeping with the notational conventions of the
theory of �nite elements. Note that the component functions of any function v 2 Sh
all have bounded Sobolev H1 norm.

Now we can �nd an explicit form for the L2 inner product on Sh with respect
to the basis f p1 ; :::;  png:
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Figure 10. The eigenvectors of the discrete square with n = 15
associated to the eigenvalues �392, �393, �394, and �395. Note that
these eigenvectors closely resemble the eigenfunctions sin(x) sin(y),
sin(x) sin(2y) � sin(2x) sin(y), sin(x) sin(2y) + sin(2x) sin(y), and
sin(2x) sin(2y) from the smooth case.

Proposition 6.1. There is a positive de�nite 3n� 3n matrix

S = (h pi ;  pj iL2I3�3)ni;j=1

so that

hu; viL2 = ~utS~v

for all u; v 2 Sh with associated vectors ~u;~v 2 R3n. The matrix S consists of 3� 3
blocks Spipj in an n � n grid, with the diagonal (resp. nondiagonal) blocks each
being multiples of the 3� 3 identity matrix,

Spjpj =

0
@ X

T2star(pj)

jT j
6

1
A I3�3 ; resp. Spipj =

0
@ X
T2star(pipj)

jT j
12

1
A I3�3

when pi and pj are adjacent, and Spipj = 0 when pi and pj are not adjacent.

Proof. We �rst note that

jvj2L2 :=

Z
T
hv; vidA =

X
T�T

Z
T

hvjT ; vjT idA :

A computation yields that for each triangle T � T ,Z
T

 2pdA =
jT j
6

;

Z
T

 p qdA =
jT j
12

;
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Figure 11. The eigenvectors of the discrete square
with n = 15 associated to the eigenvalues �396, �397,
�398, and �399. Note that these eigenvectors closely re-
semble the eigenfunctions sin(3x) sin(y) � sin(x) sin(3y),
sin(3x) sin(y) + sin(x) sin(3y), sin(3x) sin(2y) � sin(2x) sin(3y),
and � sin(3x) sin(2y) � sin(2x) sin(3y) from the smooth case.

for any vertices p and q of T . Thus

jvj2L2 =
X

T=(p;q;r)2T

jT j
6
fjvpj2 + jvqj2 + jvrj2 + hvp; vqi + hvp; vri + hvq; vrig :

Hence, for any two functions u; v 2 Sh, we have
hu; viL2 =

X
T=(p;q;r)2T

jT j
12
fhup + uq + ur; vp + vq + vri + hup; vpi+ huq; vqi + hur; vrig

=
X

pj2Vint

0
@hupj ; vpj i

0
@ X

T2star(pj)

jT j
6

1
A+

X
pi2Vint adjacent to pj

hupj ; vpii
0
@ X

T2star(pipj)

jT j
12

1
A
1
A :

Hence the 3� 3 blocks Spipj are as in the proposition.
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Figure 12. The eigenvector associated to the eigenvalue �0 �
�0:542 of a discrete catenoid. Here we have also shown this R3n-
vector �eld on a horizontal planar grid (where each R3-vector is
vertical with length equal to that of the corresponding R3-vector
in the R3n-eigenvector �eld on the discrete catenoid), so that we
can compare it directly with the eigenfunction shown in Figure
9 for the smooth case. Notice that the plot on the right closely
resembles the curve in Figure 9.

We now compute the discrete Jacobi operator Lh : Sh ! Sh associated to the
second variation formula for the surface, i.e.

R
T v

tLhvdA = ~vtQ~v for all v 2 Sh
(recall that Q = Qa �HQV ). We need the property Lh(Sh) � Sh so that we can
consider the eigenvalue problem for Lh. And we also wish Lh to be linear and
symmetric (

R
T u

tLhv =
R
T v

tLhu for all u; v 2 Sh). With these properties, the
choice of Lh is canonical:

Proposition 6.2. There exists a unique linear operator Lh : Sh ! Sh so thatR
T u

tLhvdA is symmetric in u and v andZ
T
vtLhvdA = ~vtQ~v

for all v 2 Sh. Furthermore, if v is the function in Sh associated to the R3n-vector
~v, then Lhv is the function in Sh associated to the R3n-vector

S�1Q~v :

Proof. For v =
Pn

j=1 vpj pj , we de�ne

Lhv :=
nX

i;j;k=1

(S�1)pipk((Qa;pkpj �HQV;pkpj)vpj ) pi ;

which is the function in Sh associated to S�1Q~v. This map Lh is clearly linear,
and Z

T
utLhvdA = hu;LhviL2 = ~uS(S�1Q~v) = ~utQ~v

for all u; v 2 Sh. Hence, since Q is symmetric,
R
T u

tLhvdA is symmetric in u and
v.

Uniqueness of Lh with the above properties follows from the following:Z
T
utLhvdA =

1

2

�Z
T
(u+ v)tLh(u+ v)dA �

Z
T
utLhudA�

Z
T
vtLhvdA

�
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Figure 13. Two-thirds of the eigenvectors are approximately tan-
gential to the surface. For example, here we show the R3n-
eigenvector �elds associated to the eigenvalues �1, �2, and �3
(whose values are just slightly greater than 0).

=
1

2

�
(~u+ ~v)tQ(~u+ ~v)� ~utQ~u� ~vtQ~v� :

Hence
R
T u

tLhvdA is uniquely determined for all u 2 Sh, so Lhv is uniquely deter-
mined for each v 2 Sh.

So the spectrum of the second variation of T is the set of eigenvalues of S�1Q.
One can check that S�1Q is self-adjoint with respect to the L2 inner product on
Sh, thus all the eigenvalues of S�1Q are real.

Remark 6.1. Another way to see that S�1Q is the correct discrete Jacobi operator
is to consider the Rayleigh quotient

~vtQ~v

hv; viL2

=
~vtS(S�1Q~v)

~vtS~v
:

Using the standard procedure for producing eigenvalues from the Rayleigh quotient
in this case would produce the eigenvalues of S�1Q.

7. Approximating Spectra of Smooth cmc Surfaces

We can now implement the procedure described in the second half of the intro-
duction, since we know S�1Q explicitly.

If a sequence of compact cmc discrete surfaces fT g1i=1 converges (in the Sobolev
H1 norm as graphs over the limiting surface) to a smooth compact cmc surface
� : M ! R

3, then standard estimates from the theory of �nite elements (see, for
example, [3] or [7]) imply that the eigenvalues and eigenvectors (piece-wise linearly
extended to functions) of the operators Lh of the Tj converge to the eigenvalues
and eigenfunctions of the Jacobi operator L of � (convergence is in the L2 norm
for the eigenfunctions).

For the �rst two examples here { a planar square and rotationally symmetric
portion of a catenoid { we know the approximating discrete minimal surfaces ex-
actly, and we know the eigenvalues and eigenfunctions of L for the smooth minimal
surfaces exactly, so we can check that convergence of the eigenvalues and eigenfunc-
tions does indeed occur.

In the �nal example { a symmetric portion of a trinoid { the spectrum of the
smooth minimal surface is unknown, so we see estimates for the eigenvalues and
eigenfunctions for the �rst time. Our experiments con�rm the known value 3 for the
index of this unstable surface, and additionally show us the directions of variations
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Figure 14. One-third of the eigenvectors are approximately per-
pendicular to the surface. For example, here we show the R3n-
eigenvector �elds associated to the eigenvalues �147, �171, �204,
and �210.

that reduce area. Thus we have approximations for maximal spaces of variation
vector �elds on the smooth minimal surfaces for which the associated variations
reduce area. (For the approximating discrete surfaces in this example, we do not
have an explicit form; however, the theory of �nite elements applies and we can
still expect convergence of the eigenvalues and eigenfunctions (in L2 norm), if we
choose the discrete aproximations so that they converge (inH1 norm) to the smooth
minimal surfaces.)

7.1. The 
at minimal square. Considering the squareM = f0 � x � �; 0 � y �
�g included in R3 as a smooth minimal surface, the eigenvalues and eigenfunctions
of L are �m;n =m2 + n2 and �m;n = 2

�
sin(mx) sin(ny) for m;n 2Z+ (section 5).

Now we consider the discrete minimal surface T that isM with a regular square
n�n grid. In each subsquare of dimension �

n
� �

n
, we draw an edge from the lower

left corner to the upper right corner, producing a discrete minimal surface with 2n2

congruent triangles with angles �
4 ,

�
4 , and

�
2 .

For this T , S�1Q has no negative eigenvalues, as expected, since the smooth
minimal square is stable. However, we must take tangential motions into account in
the discrete case, and we �nd that (when writing the eigenvalues in increasing order)
the �rst two-thirds of the eigenvalues are 0 and their associated eigenvectors are
entirely tangent to the surface. The �nal one-third of the eigenvalues are positive,
with eigenvectors that are exactly perpendicular to the surface. Examples of these
perpendicular vector �elds are shown in Figures 10 and 11 for n = 15. (There are
196 interior vertices, and so there are 588 eigenvalues �j of S�1Q and �0 = ::: =
�391 = 0 and �j > 0 when j 2 [392; 587].) The eigenvectors shown in these �gures
and their eigenvalues are close to those of the smooth operator L of M . We have
�392 = 2:022 � �1;1, �393 = 5:094 � �1;2, �394 = 5:148 � �2;1, �395 = 8:347 � �2;2,
�396 = 10:434 � �1;3, �397 = 10:445 � �3;1, �398 = 13:649 � �2;3, �399 = 14:12 �
�3;2.

7.2. Discrete Minimal Catenoids. By Corollary 3.2, we know that the discrete
minimal catenoids converge to smooth catenoids as the meshes are made �ner.
Hence the eigenvalues and eigenvectors of the discrete catenoids converge to the
eigenvalues and eigenfunctions of the smooth catenoid. For the discrete catenoids
with relatively �ne meshes, we �nd that two-thirds of the eigenvectors are approx-
imately tangent to the surface, and the remaining ones are approximately perpen-
dicular. The approximately perpendicular ones (considered as functions which are
multiplied by unit normal vectors) and their eigenvalues converge to the eigenfunc-
tions and eigenvalues of the smooth catenoid (computed in section 5).
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Figure 15. Here we show the projected versions of the eigenvec-
tors in the previous �gure, for use in comparing with the eigenfunc-
tions of the smooth case considered in section 5. These projected
versions are made the same way as in Figure 12.

Consider the example shown in the Figures 12, 13, 14, and 15. Here the catenoid
has 9 � 14 = 126 interior vertices, so the matrix S�1Q has dimension 378 � 378.
The �rst eigenvalue of this matrix is �0 � �0:542 and �j > 0 for all j 2 [1; 377],
as expected, since the smooth complete catenoid has index 1 ([6]). Note that �0 is
very close to the negative eigenvalue for the smooth case, described in the caption of
Figure 9 (the closest matching smooth catenoid portion satis�es y1 = �y0 = 1:91).
The �rst eigenfunction in the discrete case (Figure 12) is also very close to the �rst
eigenfunction in the smooth case (Figure 9).

7.3. Discrete Minimal Trinoids. Since the trinoid has index 3, we �nd that
approximating discrete surfaces with relatively �ne meshes have 3 negative eigen-
values. And we can look at the corresponding eigenvector �elds (which estimate
the eigenfunctions in the smooth case), shown in Figure 16. For the approxi-
mating discrete trinoid in Figure 16, the �rst four eigenvalues are approximately
�3:79;�1:31;�1:31; 0:014, so we indeed have 3 negative eigenvalues and the second
eigenvalue has multiplicity 2.
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of this discrete surface are shown.
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